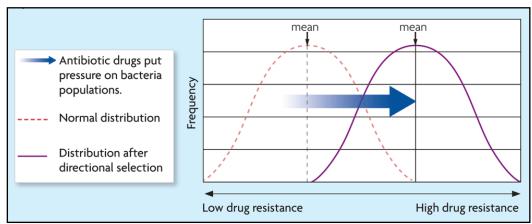
CORNELL NOTES

Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned sections (if completed) and turned in to your teacher at the end of the Unit for scoring.

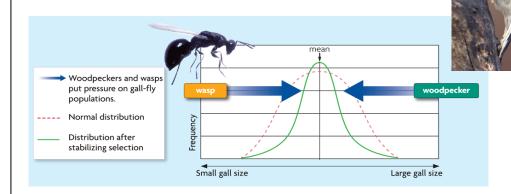
UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations


A. Genetic variation in a population _____ the chance

I. Genetic Variation Within Populations (11.1)

that so	ome ind	dividuals will		_
	1. Ger	netic variation in	n population	s lead to differences in
	2	:	selection ac	cts on phenotype
	3. The greater the range in phenotypes, the more likely some individuals can survive environmen			
		a population	ge	enetic variation stored in
		b. Each allele gene frequen		ertain
B. Gei	netic va	ariation comes	from several	l
	1. M u	tation- random	change in o	rganisms
		a. can form ne	w	
		b. Mutations ir passed on	1	cells can be
		c. Increases _		_ variation in gene pool
	2. Re d	combination- r	new allele co	mbination form in
		a	new combin	nations of parents alleles
		b. Crossing o	ver increase	es
II. Natural Se	election	in Populations	(11.2)	
A. Nat	tural se	election acts on		of traits
		mal distribution		FIGURE 11.2 NORMAL DISTRIBUTION mean
	can ch	rironmental con nange and a ce ntype may beco	rtain	Range of variable

B. Natural Selection can change the distribution of a trait in one of three ways


	1. Microevolution-obse	ervable change in
1	requency of a	over time
	a. Occurs on	scale within single population
		on can change distribution of a atths (directional, stabilizing, or on
	2. Directional Selectio copulations	n- causes in a distribution
	a. An extreme ph	enotype that was once
		a trait shifts in direction of the phenotype
	c. Lead to rise in	resistant bacteria

3. **Stabilizing Selection**- the intermediate phenotype is and becomes **more common.**

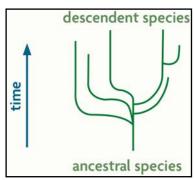
a. _____ genetic diversity

b. Extreme phenotypes may be _____

4. Disruptive Selection- occurs when both extremes are favored and are selected against a. Intermediate forms selected b. Can lead to formation of new _____ mean Dominant adult males put pressure on young males in the bunting population. ---- Normal distribution Distribution after disruptive selection Brown III. Other Mechanisms of Evolution (11.3) A. Gene flow is the movement of alleles between populations 1. **Gene flow-** movement of _____ from one _____ to another a. Increases genetic variation of _____ population b. **Gene flow** between populations keeps gene pools _____ c. Less gene flow can create genetically _____ populations d. Lack of gene flow increases chance that two populations will _____ into different species B. Genetic drift is a change in allele frequencies due to chance 1. Small populations are _____ to be affected by _____ 2. Genetic Drift- changes in allele frequencies due to _____ (Two ways this occurs) a. _____ Effect- genetic drift that occurs after an _____ (e.g. overhunting) b. _____ Effect- genetic drift that occurs after a small number of individuals _____ a new area

	a. Lose of to	variation to changing e	on- ability of group environment is
		alleles may be ne pool due to	pecome more
C. Sexual se mating succe		s when certain tra	aits increase
1 of pop	car oulation	n have important	effect on evolution
		nake many sper relatively	
	offspring can p	more limited produce (each in they want a goo	vestment more
	cual selection-		increase
		ts can become v ugh sexual seled	•
		s for mating succ	_
IV. Hardy-Weinberg	g Equilibrium (1	1.4)	
A. Hardy-We aree		orium describes	populations that
			e same over time e met. (5 conditions)
	a. Very drift can occur	populati	ons (no genetic
	b. No	r) or	(no gene
	c. No added to the g	gene pool)	ew alleles can be
	d	_ mating (no se	xual selection can

3. Effects of Genetic Drift


he Hardy-Weinberg equation is used to otype frequencies in a population
1. Used in simplesystems
2. Shows values that would exist in population in
3. Use equation (if calculated frequencies match actual frequencies, then population in equilibrium)
$p^2 + 2pq = q^2 = 1$
VARIABLES
p = frequency of allele T (dominant allele)
q = frequency of allele t (recessive allele)
p^2 = frequency of fish with TT (dominant homozygous genotype)
2pq = frequency of fish with Tt (heterozygous genotype)
q² = frequency of fish with tt (recessive homozygous genotype)
here are 5 factors that can lead to evolution (populations in Hardy-Weinberg equilibrium are)
1 drift (allele frequencies change due to chance)
2. Gene flow (movement ofemigration and immigration)
3 (New alleles form through mutation and create genetic)

e. **No _____ selection** (all traits must equally aid in survival)

mating)
5 selection (certain traits advantageous to survival. Alleles for these traits increase in frequency)
V. Speciation Through Isolation (11.5)
A. The isolation of populations can lead to
1. Speciation - the rise of two or more from one species
2 isolation- when members of different populations can no longer mate successfull with one another)
B. Populations can become in several ways
1. Behavioral barriers
a. Behavioral isolation - isolation caused by differences in or behavio
b. Chemical scents, courtship dances, courtship songs, sexual signals used to attract
2. Geographic barriers
a. Geographic isolation - involvesbarriers that divide
b. Include mountains, rivers, dried lakebeds,etc.
c. Over time isolated populations become different
3. Temporal Barriers
a. Temporal Isolation prevents between populations
b. Reproductive periods may change and can lead to
VI. Patterns of Evolution (11.6)
A. Evolution through natural selection is not

	1. Environment controls the natural selection	taken by
	2. The response of species to challenges and opportunities is	
	a Evo similar characteristics in	lution - evolution towards unrelated species
	b Even evolve in different direction increasingly different	rolution- related species ons and become
B. Spe	ecies can shape each other over	
	1 two or r response to changes in each of	
	2. Evolutionary arms race relationships	can occur ir
C. Spe	ecies can become extinct	
	1. extinctiono	f a species from Earth
	2. Background extinctions- e	
	3 extinction- more rar	e, but more intense
	a Can occur on	level
	b. Thought to occur due events (e.g. ice age, aste	
D. Spe	eciation often occurs in patterns	
	Punctuated equilibrium evolutionary activity a. Episodes of speciation	
	b. Followed by periods o	f change
	2. Adaptive radiation- Diversification of one	descendent species

2. Adaptive radiationDiversification of one
_____ species into many descendent species

